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The application of the Rayleigh-Fourier and Rayleigh least-squares methods to reflection and transmission
of electromagnetic waves at periodic rough interfaces between general homogeneous media is considered. For
the calculation of the reflected and transmitted amplitudes, it is shown that the Rayleigh-Fourier method
converges when the Waterman-Fourier method does and is therefore not limited by the validity of the Rayleigh
hypothesis. It is also shown that the Rayleigh least-squares method applied to boundary-value problems is
numerically convergent if the solution exists uniquely. A numerical application of both methods to the case of
a sinusoidal interface between a perfectly conducting medium and a bi-isotropic medium corroborates these
results. We indicate very general conditions under which the Rayleigh-Fourier and Rayleigh least-squares
methods have the properties indicated above; they include anisotropic elastic solid media in particular.
@S1063-651X~96!02811-5#

PACS number~s!: 03.50.De, 42.25.Fx

I. INTRODUCTION

Among the various methods classically used to deal with
reflection and transmission of waves at rough interfaces
@1–3#, the Rayleigh methods are particularly simple to
implement. They are based on the hypothesis, postulated by
Rayleigh@4#, that the field scattered from a rough surface is
representable as a sum of outgoing and evanescent waves
everywhere on and above the surface. The determination of
the amplitudes of those waves is achieved numerically by
projecting the boundary conditions on a given set of basis
functions; there are therefore as many Rayleigh methods as
sets of basis functions used to project the boundary condi-
tions on.

The Rayleigh hypothesis, regarded by some authors as
dubious, gave rise to a debate, some accounts of which are
given by Fortuin@5# and Bolomey and Wirgin@6#. Necessary
and/or sufficient conditions of the validity of the Rayleigh
hypothesis were established by Petit and Cadilhac@7#,
Nevière and Cadilhac@8#, Millar @9,10# and van den Berg
and Fokkema@11,12# for extended interfaces. The case of
cylindrical obstacles has also been studied@13#.

It has been found, however, that the Rayleigh-Fourier
method and the Rayleigh least-squares method could yield
accurate numerical results well beyond the domain of valid-
ity of the Rayleigh hypothesis@14–16#. In the Rayleigh
least-squares method, which is applied to boundary-value
problems, the scattered mode amplitudes are calculated by
minimizing the integrated-square error on the boundary con-
dition, which is equivalent to projecting the boundary condi-
tion expressed with the Rayleigh hypothesis on a certain set
of functions@17#. In the case of two-dimensional scalar dif-
fraction from a periodic rough surface, Millar@18# has shown
that this method leads to a sequence that uniformly con-
verges to the exact diffracted field in any closed subset of the
medium of propagation provided that the problem has a
unique solution; as a consequence, the numerical scattered
mode amplitudes tend to their exact values as the number of

equations solved tends to infinity. These remarkable proper-
ties hold regardless of the validity of the Rayleigh hypoth-
esis; however, it has been noted that, in practice, the Ray-
leigh least-squares method is not the most efficient method
of computation of the scattered mode amplitudes. The
Rayleigh-Fourier method, in which the scattered mode am-
plitudes are found by projecting the boundary condition in
the Fourier space, shows a faster convergence and gives re-
markably good results@14–16,19,20#; Chesneaux and Wir-
gin have found, however, that this method cannot in general
be used to compute the near field@21#. In addition, Jackson,
Winebrenner, and Ishimaru@22# have carried out numerical
and analytical calculations that tend to indicate that, in the
case of diffraction of an acoustic plane wave from a surface
with a Dirichlet condition, the perturbation series of the
Rayleigh-Fourier method is identical to the perturbation se-
ries of the Waterman-Fourier method@14#, which is not lim-
ited by the validity of the Rayleigh hypothesis; the authors
conjecture that this identity holds for more general boundary
conditions.

The behavior of the Rayleigh-Fourier method may seem
surprising@15,16,21,22# since the convergence of the repre-
sentation of the scattered field does not hold in general. In
demonstrations that parallel that of Burrows for finite ob-
stacles@23#, it has been shown in Refs.@24,25# for fluid and
isotropic solid media that if the Rayleigh-Fourier formalism
and the Waterman-Fourier formalism have unique solutions
in terms of theT matrix these solutions are connected by the
reciprocity relationships and are therefore identical~since the
Waterman-Fourier solution, which is exact, verifies the reci-
procity relationships!. This equality may seem formal, but, as
we will see, it holds in terms of numerical results if specific
truncations of the equations are made@25#; this apparently
formal equality can also be used to show that the Waterman-
Fourier and Rayleigh-Fourier perturbation series@22# are
identical for a large class of surfaces. Another demonstration
of the identity of the two perturbation series for scalar dif-
fraction and the Dirichlet problem has been proposed re-
cently @26#. Since the Rayleigh-Fourier perturbation series
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are the same as those derived from the exact Waterman-
Fourier formalism, they can be used as a computational ap-
proach; their use, along with various enhanced convergence
techniques, has turned out to be successful@22,27–31#.

All the debate about the Rayleigh methods has so far
mainly dealt with interfaces between simple isotropic media.
The study of periodic rough interfaces between more general
media has recently attracted some attention and has been
addressed with integral-equation methods@32,33#, Waterman
methods@34–36#, and differential methods@37#. In a recent
article, Depine and Gigli@38# pointed out the practical inter-
est of Rayleigh methods in dealing with anisotropic gratings;
they showed numerically on specific problems that these
methods give good results well beyond the domain of valid-
ity of the Rayleigh hypothesis. The purpose of this paper is
to demonstrate that the Rayleigh-Fourier and Rayleigh least-
squares methods can indeed be adequate, regardless of the
validity of the Rayleigh hypothesis, to calculate reflection
and transmission coefficients at periodic rough interfaces
separating general homogeneous media and, for the Rayleigh
least-squares method, to calculate the electric field at any
point.

The plan of the paper is as follows. In Sec. II, we describe
the problem, our notations, and some properties of the eigen-
waves and of the free-space dyadic Green’s functions of the
Maxwell equations in general homogeneous media. In Sec.
III, we give a justification of the use of the Rayleigh-Fourier
method. In Sec. IV, we demonstrate that the Rayleigh least-
squares results obtained for boundary-value problems con-
verge to the exact results as the number of equations solved
tends to infinity. In Sec. V, we illustrate the properties of
both methods with a numerical application. Section VI pre-
sents our conclusions.

II. PROBLEM DESCRIPTION

We define an orthonormal basis~e1,e2,e3!. We consider a
periodic rough interfaceS, separating two homogeneous me-
dia, defined by the relationz5 f ~R!, whereR is the compo-
nent of the three-dimensional position vectorr in the ~e1,e2!
plane andz is the coordinate ofr alonge3; a1 anda2 are the
two periods off and the reciprocal vectorsR1 andR2 are
such thatai•Rj52pd i j , where di j is the Kronecker delta
symbol ~i , j51 or 2!. f is assumed to be continuous. Except
perhaps on a discrete set of points, it is possible to define a
unit normaln to S pointing towards the above medium~say,
medium 1! and two surface vector fieldst1 andt2 in the plane
tangent toS such that~t1,t2,n! is an orthonormal basis at
each point ofS and, in particular,t13t25n, t23n5t1, and
n3t15t2.

Boldface characters are used to designate vectors. All
field quantities are time harmonic and classically expressed
as complex quantities with time dependence exp~2ivt! sup-
pressed. The electric and magnetic fieldsD,E andH,B ~with
classical notations! in each medium satisfy the Maxwell
equations

“3E5 ivB, ~1a!

“3H52 ivD. ~1b!

The interface conditions express the continuity of the tan-
gential components ofE andH on S,

n3E15n3E2, ~2a!

n3H15n3H2, ~2b!

whereE6 andH6 designate the electric and magnetic fields
at S above~1! and below~2! the interface. In addition, the
reflected and transmitted electric and magnetic fields satisfy
the radiation condition at infinity.

The constitutive relationships connectingD and B to E
andH are

D5e~ j !
•E1a~ j !

•H, ~3a!

B5b~ j !
•E1m~ j !

•H, ~3b!

where the superscripts (j ) correspond to the mediumj ~j51
or 2! and e( j ), a( j ), b( j ), and m( j ) are 333 matrices. The
constitutive relationships may be frequency dependent.m( j )

is assumed to have an inversem( j )21. For each mediumj , we
define a complementary medium@39#, denotedjC, by the
following constitutive relationships: e ( jC)5 te ( j ),
a ( jC)52 tb ( j ), b ( jC)52 ta ( j ), and m ( jC)5 tm ( j ), where the
superscriptt designates the transpose of a 333 matrix. The
complementary medium of mediumjC is the mediumj .

In a medium designated byj , the homogeneous equation
for E can be written

L~ j !~E!50, ~4!

with the operatorL( j ) being defined by its application to a
vector fieldV,

L~ j !~V!5 iv“3H~ j !~V!2v2@e~ j !
•V1a~ j !

•H~ j !~V!#,
~5a!

H~ j !~V!5~ iv!21m~ j !21
•~“3V!2m~ j !21

•~b~ j !
•V!.

~5b!

The eigenwaves are of the formV~k!exp~ik•r !, wherek is a
wave vector. Substitution of such a field into Eq.~4! leads to
the vector equationL ( j )~k,v!•V~k!50, whereL ( j )~k,v! is a
333 matrix that depends on the mediumj , k, andv. We
designate the adjoint ofL ( j )~k,v! by M ( j )~k,v!; we note that
for the values ofk such that the determinant ofL ( j )~k,v! is
equal to 0, the vectorsM ( j )~k,v!•e1, M ( j )~k,v!•e2, and
M ( j )~k,v!•e3 are eigenvectors.

We now give the plane-wave expansion of the free-space
dyadic Green’s functions. The free-space Green’s vector
fieldsGk0

( j )(r ;r0) corresponding to the problem described in

Sec. II satisfy, apart from the radiation condition,

L~ j !@Gk0
~ j !~r ;r0!#5ek0d~r2r0! ~6!

whered~r2r0! is the classical delta function,k051, 2, or 3,
andL( j ) is the operator defined by Eq.~5a!. Gk0

( j ) , which is

defined as a generalized function, is classically assumed to
have a sense as a vector field~when rÞr0! whose plane-
wave expansion can be written
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Gk0
~ j !~r ;r0!56

i

4p2 (
n51

2 E an
~ j !6~K !

3@ek0•Vn
~ jC !7~2K !#Dn

~ j !6~K ,v!Vn
~ j !6~K !

3exp@ ikn
~ j !6~K !•~r2r0!#d

2K, ~7!

where the upper sign applies if~z2z0!.0 and the lower sign
applies if~z2z0!,0 ~z andz0 are the coordinates ofr andr0
alonge3!. Thek n

( j )6’s are such that

kn
~ j !6~K !5K1knz

~ j !6~K !e3 , ~8!

detL ~ j !
„kn

~ j !6~K !,v…50, ~9!

wheren indicates the type of eigenwave considered~n51 or
2!, K is the transverse component ofk n

( j )6~K ! in the ~e1,e2!
plane,k nz

( j )6~K ! is defined by Eq.~9! and the radiation con-
dition 6Im@k nz

( j )6~K !#.0 if k nz
( j )6~K ! is not strictly real~Im

designates the imaginary part of the argument! and
6]k nz

( j )6/]v.0 if k nz
( j )6~K ! is real. detL ( j ) is the determinant

of L ( j ). The other elements in Eq.~7! are defined by

Vn
~ j !6~K !5M ~ j !

„kn
~ j !6~K !,v…•e1 , ~10!

Dn
~ j !6~K ,v!5S ] detL ~ j !~k,v!

]kz
D
k5k

n
~ j !6~K !

21

, ~11!

M ~ j !
„kn

~ j !6~K !,v…•ek0

5an
~ j !6~K !@ek0•Vn

~ jC !7~2K !#Vn
~ j !6~K !. ~12!

Equation~7! is obtained by solving Eq.~6! in the Fourier
space and evaluating the resulting integral forGk0

( j )(r ;r0) in
the kz complex plane by the residue theorem. We have as-
sumed that detL ( j )~k,v! has, for allK , two proper single
roots in kz with each root corresponding to a one-
dimensional space of eigenvectors. Then, whenk5k n

( j )6~K !
and therefore detL ( j )50, the three vectorsM ( j )

•ek0, which
are as already indicated eigenvectors in this case, are collin-
ear with V n

( j )6~K !; the equalityM ( jC)~2k,v!5tM ( j )~k,v!,
which stems from the definition of mediumjC, allows us to
write Eq.~12! with the scalara n

( j )6~K ! being independent of
k0.

It can be verified that the definition of mediumjC also
implies

L ~ jC !~2k,v!5 tL ~ j !~k,v!, ~13!

where the superscriptt designates the transpose of a matrix,
so that

detL ~ jC !~2k,v!5detL ~ j !~k,v!. ~14!

As a consequence of Eq.~14! and the radiation condition, we
can write

knz
~ j !6~2K !52knz

~ jC !7~K !, ~15!

so that

kn
~ j !6~2K !52kn

~ jC !7~K !. ~16!

Equations ~16! and ~12! and the equality
M ( jC)~2k,v!5tM ( j )~k,v! imply that

an
~ j !6~2K !5an

~ jC !7~K ! ~17!

and Eq.~14! leads to

Dn
~ j !6~2K ,v!52Dn

~ jC !7~K ,v!. ~18!

Equations~7! and~16!–~18! are essential to the arguments
developed in this paper. It can be noted that they all stem
from Eq. ~13!.

We now define the unknowns of the problem. The general
expression of the free-space Green’s vector fields shows that,
in view of the linearity of the problem, reflection and
transmission atS are completely described by reflection
and transmission of two types of incident eigenwaves
~say, coming from medium 1! of the form
Vn0
(1)2(K inc)exp@ikn0

(1)2(K inc)•r #. With such incident electric

fields, the reflected and transmitted electric fieldsEref
~1! and

E~2! beyond the maximum excursions of the interface can be
expressed as an expansion on two types of Bloch eigenwaves
whose amplitudes define theT-matrix coefficients
tnn0
(1) (K inc MN ,K inc) and tnn0

(2) (K inc MN ,K inc),

Eref
~1!~r !5 (

n51

2

(
M ,N

tnn0
~1! ~K inc MN ,K inc!Vn

~1!1~K inc MN!

3exp@ ikn
~1!1~K inc MN!•r #, ~19a!

E~2!~r !5 (
n51

2

(
M ,N

tnn0
~2! ~K inc MN ,K inc!Vn

~2!2~K inc MN!

3exp@ ikn
~2!2~K inc MN!•r #, ~19b!

whereM andN are integers, the sum is over all integers, and

K inc MN5K inc1MR11NR2 . ~20!

For a givenK inc , the problem of reflection and transmis-
sion at S is to determine thetnn0

( j ) (K inc MN ,K inc) for all

M ,N,n,n0 , j . In general, we are mainly interested in the val-
ues of M and N such that knz

(1)1(K inc MN) and
knz
(2)2(K inc MN) are real.
It can be noted that thetnn0

( j ) ’s andtnn0
( jC)’s are connected by

specific relationships. WhenS separates media 1 and 2, we
define the scattering Green’s vector fieldGsc,k0

(r ;r0) to be

the electric field at pointr due to a unit source alongek0 at
point r0. WhenS separates media 1C and 2C, we designate
the analogous scattering Green’s vector field by
Gsc,k0
(C) (r ;r0). It can be classically shown with Green’s theo-

rem that

Gsc,k0k1
~C! ~r1 ;r0!5Gsc,k1k0

~r0 ;r1! ~21!

for all k0 andk1, with the notationGsc,k0k1
5ek1•Gsc,k0

. Let
r0 andr1 be two vector points located beyond the maximum
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excursions ofS. We proceed, as Jackson, Winebrenner, and
Ishimaru did for scalar diffraction@22#, by expressing the
incident electric field due to each unit point source with Eq.
~7! as a superposition of plane waves, each of which gives
rise to a diffracted field determined by theT-matrix coeffi-
cients; then, ifr0 and r1 are both located aboveS, Eq. ~21!
leads to

2an
~1!2~K !Dn

~1!2~K ,v!tmn
~1!~KMN ,K !

5am
~1!1~KMN!Dm

~1!1~KMN ,v!tnm
~1C!~2K ,2KMN!

~22!

for all K , allm,n ~51 or 2!, and all integersM andN, which
generalizes the relationship for scalar diffraction in a simple
isotropic medium@22#. If r0 is located aboveS and r1 is
located belowS, Eq. ~21! leads to

an
~1!2~K !Dn

~1!2~K ,v!tmn
~2!~KMN ,K !

5am
~2!2~KMN!Dm

~2!2~KMN ,v!tnm~B!
~1C! ~2K ,2KMN!

~23!

for all K , all m,n and all integersM andN. The subscript
(B) refers to the case of illumination ofS by an eigenwave
coming from medium 2~see Sec. III B!. Equations~17! and
~18! have been used to establish Eqs.~22! and ~23!.

III. RAYLEIGH-FOURIER METHOD

A. Formalism description

In the Rayleigh-Fourier method, theT-matrix coefficients
are determined by formally writing the interface conditions
with the expressions~19a! and ~19b! of the reflected
and transmitted electric fields in each medium and projecting
them on the sets of surface vector fields
t1exp(2iK incPQ•R) andt2exp(2iK incPQ•R), whereP andQ
are integers. For reasons that will appear in Sec. III B, we
choose to express the Rayleigh-Fourier formalism in the case
whereS separates medium 1C, located above, and medium
2C. In the case of illumination ofS by an eigenwave of type
n0 coming from medium 1C, we obtain

X~1C!2~K inc ,l ,n0,0,0,P,Q!1 (
n51

2

(
M52Mmax

Mmax

(
N52Nmax

Nmax

3tnn0 ,R
~1C! ~K incMN ,K inc!X

~1C!1~K inc ,l ,n,M ,N,P,Q!

5 (
n51

2

(
M52Mmax

Mmax

(
N52Nmax

Nmax

3tnn0 ,R
~2C! ~K incMN ,K inc!X

~2C!2~K inc ,l ,n,M ,N,P,Q!,

~24a!

Y~1C!2~K inc ,l ,n0,0,0,P,Q!1 (
n51

2

(
M52Mmax

Mmax

(
N52Nmax

Nmax

3tnn0 ,R
~1C! ~K incMN ,K inc!Y

~1C!1~K inc ,l ,n,M ,N,P,Q!

5 (
n51

2

(
M52Mmax

Mmax

(
N52Nmax

Nmax

3tnn0 ,R
~2C! ~K incMN ,K inc!Y

~2C!2~K inc ,l ,n,M ,N,P,Q!

~24b!

for all l ~l51 or 2!, P,Q ~with 2Mmax<P<Mmax and
2Nmax<Q<Nmax!, where

X~ jC !6~K inc ,l ,n,M ,N,P,Q!

5E
S0

~ t l3n!•Vn
~ jC !6~K incMN!eikn

~ jC !6
~K incMN!•rS

3e2 iK incPQ•Rd2R, ~25a!

Y~ jC !6~K inc ,l ,n,M ,N,P,Q!

5E
S0

~ t l3n!•HVn
~ jC !6~K incMN!eikn

~ jC !6
~K incMN!•rS

3e2 iK incPQ•Rd2R, ~25b!

whereHVn
( jC)6(K incMN) is defined by

H~ jC !@Vn
~ jC !6~K incMN!eikn

~ jC !6
~K incMN!•r#

5HVn
~ jC !6~K incMN!eikn

~ jC !6
~K incMN!•r. ~26!

In Eqs. ~25a! and ~25b!, S0 is a given unit cell ofS and
rS5R1 f (R)e3. The Rayleigh-Fourier equations~24a! and
~24b! have been truncated for numerical applications so that
they form a linear system of 4~2Nmax11!~2Mmax11! equa-
tions with 4~2Nmax11!~2Mmax11! unknowns. The subscript
R indicates that the solution is obtained with the Rayleigh-
Fourier method and the truncation chosen.

There are as many Rayleigh-Fourier methods as possible
definitions of t1 and t2. In this paper, we suppose that one
definition is chosen once and for all to implement both the
Rayleigh-Fourier method and the Waterman-Fourier method.

B. Connection between the Rayleigh-Fourier
and Waterman-Fourier numerical results

In the Appendix, we have established the Waterman-
Fourier equations in the case whereS, separating media 1
and 2, is illuminated from either medium with a transverse
incident wave vector equal to2K incM0N0

, whereM0 andN0

are two given integers; it must be noted that a certain type of
truncation, depending onM0 andN0, has been applied and is
implicit in the definition of the Waterman-Fourier numerical
results~designated by the subscriptW!.

First we consider Eqs.~A18!–~A21! written in the
case where the incident plane wave is
Vn0
(1)2(2K incM0N0

)exp@ikn0
(1)2(2K incM0N0

)•r # ~d151 and

d250 in the Appendix!. In view of the type of truncation
chosen, we can express eachX(1C)2 andY(1C)2 in Eq. ~A21!
with Eqs.~24a! and~24b!, respectively; by doing so, we find
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2
4p2

van
~1!1~2K inc!

@Dn
~1!1~2K inc ,v!#21

3tnn0 ,W
~1! ~2K inc ,2K incM0N0

!

52 (
n851

2

(
M852Mmax

Mmax

(
N852Nmax

Nmax

3tn8n,R
~1C!

~K incM8N8 ,K inc!B
~1C!1~n8,M 8,N8;M0 ,N0!

1 (
n851

2

(
M852Mmax

Mmax

(
N852Nmax

Nmax

3tn8n,R
~2C!

~K incM8N8 ,K inc!B
~2C!2~n8,M 8,N8;M0 ,N0!,

~27!

whereB(1C)1 andB(2C)2 are defined in the Appendix. By
taking Eqs.~A18! and~A19! into account in Eq.~27!, we get,
with Nmax.uN0u andMmax.uM0u,

2an0
~1!2~2K incM0N0

!Dn0
~1!2~2K incM0N0

,v!

3tnn0 ,W
~1! ~2K inc ,2K incM0N0

!

5an
~1!1~2K inc!Dn

~1!1~2K inc,v!tn0n,R
~1C! ~K incM0N0

,K inc!.

~28!

Then we consider Eqs.~A18!–~A21! in the case where the
incident plane wave is

Vn0
~2!1~2K incM0N0

!exp@ ikn0
~2!1~2K incM0N0

!•r #

~d150 andd251 in the Appendix!; the subscript (B) is added
to indicate this type of illumination ofS. By expressing each
X(1C)2 andY(1C)2 in Eq. ~A21! with Eqs. ~24a! and ~24b!
and taking Eqs.~A18! and ~A19! into account as above, we
get, withNmax.uN0u andMmax.uM0u,

an0
~2!1~2K incM0N0

!Dn0
~2!1~2K incM0N0

,v!

3tnn0 ,W~B!
~1! ~2K inc ,2K incM0N0

!

5an
~1!1~2K inc!Dn

~1!1~2K inc ,v!tn0n,R
~2C! ~K incM0N0

,K inc!.

~29!

It appears in Eqs.~28! and~29! that the numerical results
of the Rayleigh-Fourier and Waterman-Fourier methods are
connected by the equalities~22! and ~23! ~when Eq.~23! is
applied to media 1C and 2C and Eqs.~17! and ~18! are
used!. These relationships are strictly verified by the exact
values of the T-matrix coefficients. Therefore, if it is admit-
ted that the Waterman-Fourier numerical results converge to
the exact values of the T-matrix coefficients asMmax and
Nmax tend to infinity ~this is implicitly the case when the
method is used!, the Rayleigh-Fourier numerical results also
converge to the exact values. Furthermore, since the domain
of validity of the Rayleigh hypothesis is not involved in the
quality of the Waterman-Fourier results, it does not intervene
either in the quality of the Rayleigh-Fourier results. This
conclusion has been found above when the Rayleigh-Fourier
method is applied to the physical problem of wave propaga-
tion in media 1C and 2C; since there is no constraint on the

choice of these media, it is of course also valid for wave
propagation in media 1 and 2.

Therefore the use of the Rayleigh-Fourier method is nota
priori less justified than the use of the Waterman-Fourier
method and, in particular, it is not limited by the validity of
the Rayleigh hypothesis. Like the Waterman-Fourier
method, it can be regarded as a computational tool for the
evaluation of the T-matrix coefficients in the kind of problem
considered. This method has already been numerically inves-
tigated by Depine and Gigli@38# in the case of a corrugated
interface~sinusoidal or cycloidal! between a uniaxial crystal
and an isotropic dielectric. They found that the Rayleigh-
Fourier method gives good results for the T-matrix coeffi-
cients well beyond the domain of validity of the Rayleigh
hypothesis, which can be explained by the arguments devel-
oped in this section. It must be noted, however, that the
Rayleigh-Fourier method has been shown to be adequate
only for the computation of the T-matrix coefficients;
Chesneaux and Wirgin@21# have found it to be inadequate
for evaluating the near field in general. We confirm these
results in the numerical application of Sec. V.

We have found that, more generally, it is possible to as-
sociate with each Rayleigh method~characterized by a set of
projection basis functions! a Waterman method~character-
ized by a set of expansion basis functions! such that the
equalities ~28! and ~29! hold. We have focused on the
Rayleigh-Fourier and Waterman-Fourier methods because
they are simple and frequently used.

IV. RAYLEIGH LEAST-SQUARES METHOD

We now return to the general problem described in Sec.
II. Here S is the boundary of a semi-infinite homogeneous
medium located aboveS and the electric field satisfies
n3E50 atS; S is such that this boundary-value problem has
a unique solution forE. We show that, with the expression
~A10! of the free-space pseudoperiodic Green’s vector fields,
the rationale of Millar applied to scalar diffraction in a
simple isotropic medium@18# can be extended to diffraction
in a general medium so that the Rayleigh least-squares
method is also numerically convergent in the latter case. We
use the notations of Sec. II with the now unnecessary super-
script (j ) omitted. The superscript (C) now indicates the
complementary medium defined in Sec. II.

We first show that the set of vector functions

Wn
~C!1~2K incPQ!~rS!5n3Vn

~C!1~2K incPQ!

3exp@ ikn
~C!1~2K incPQ!•rS#,

whererS5R1f ~R!e3, K inc andR are vectors in the~e1,e2!
plane,n51 or 2, andP andQ are integers, forms a complete
basis ofL'

2~2K inc!, which we define as the space of pseudo-
periodic ~with pseudoperiodicity characterized by2K inc!
vector fields defined onS, tangent toS at all points, and
square integrable on a given unit cellS0 of S. In order to do
so, we classically show that a vector fieldg of L'

2~2K inc!,
which is orthogonal to everyWn

(C)1(2K incPQ), is necessar-
ily the null element ofL'

2~2K inc!. Let g be such an element;
for all integersP andQ and forn51 or 2 we can write

E
S0

@n3g* ~rS!#•Vn
~C!1~2K incPQ!

3exp@ ikn
~C!1~2K incPQ!•rS#dS50, ~30!
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whereg* denotes the conjugate ofg.
Let r0 be a vector point in the region defined by

z,minf ~R!. By multiplying Eq. ~30! for each n,P,Q,k0
~k051, 2, or 3! by

an
2~K incPQ!Dn

2~K incPQ ,v!@ek0•Vn
2~K incPQ!#

3exp@2 ikn
~C!1~2K incPQ!•r0#

and summing onn, P, andQ, we find, for allk0,

E
S0

@n3g* ~rS!#•Gk0
~C!~PP!~rS ;r0!dS50, ~31!

whereGk0
(C)(PP) is the pseudoperiodic Green’s vector field

defined by Eq.~A10!. Uniform convergence onS0 of the
series in Eq.~A10! has been assumed for allr0 located below
the lowest point ofS in order to interchange the integration
and the discrete sum.

We now set, for allr0 not located onS and allk0,

ek0•F~r0!5E
S0

@n3g* ~rS!#•Gk0
~C!~PP!~rS ;r0!dS. ~32!

Equation~31! shows thatF~r0!50 for all r0 below the low-
est point ofS. We now show thatF~r0!50 for all r0 below
S.

It has been assumed in the Appendix that
Gk0
(C)(PP)(rS ;r0) is a holomorphic function of the Cartesian

coordinates ofr0. Sincen3g* ~rS! is square integrable onS0,
it can be approximated in the mean-square sense as closely
as wanted by a continuous function so that differentiation
under the integral sign in Eq.~32! is possible@40#; conse-
quently,F~r0! is also a holomorphic function of the Carte-
sian coordinates ofr0 and is therefore analytic@40#. SinceF
is analytic andF~r0!50 for all r0 below the lowest point of
S, F~r0!50 for all r0 belowS.

Equations~A7! and~A9! indicate the jump properties atS
of potentials defined likeF~r0! wheng* is continuous; in the
present case,n3F is continuous acrossS. SinceF~rS2ln!
tends to0 asl tends to 0~with l.0!, n3F is the null vector
atSabove the interface. In the more general case whereg* is
square integrable,n3g* can be approximated in the mean-
square sense as closely as wanted by a continuous surface
vector field, say,n3gc* (rS), which generates a pseudoperi-
odic vector potentialFc ~the subscriptc should not be con-
fused with the superscriptC, which designates the comple-
mentary medium!. With the aid of the Schwarz inequality, it
can be shown that maxiF2Fci can be made as small as
wanted on either side ofS. Since in additionF50 below the
interface andn3Fc is continuous acrossS, n3F50 at S
above the interface~as in the case whereg is continuous!.
ThereforeF satisfies the general equations of propagation
~in the original medium!, the radiation condition, and
n3F50 atS. Since the boundary-value problem considered
here is assumed to have a unique solution,F~r0!50 at all r0
aboveS so that

F~r0!50 ~33!

at all r0 not located onS.

Equation~33! indicates thatH@F~rS6ln!# tends to0 asl
tends to 0. Then

E
S0

in3g* ~rS!i2dS50. ~34!

Equations~A7! and~A9! and the existence of the limit indi-
cated before Eq.~34! show that if g* is continuous, this
result holds without the square integration. Equation~34! is
an extension to the case whereg* is square integrable; it is
analogous to the extension made in Ref.@41# in a simpler
case. This equation can be demonstrated by noting that
maxin3H~C!~Fc!i can, as maxiFci, be made as small as
wanted on either side ofS; then Eq.~34! can be shown with
the Minkowski inequality involvingn3g* , n3gc* , and the
jumps of n3H~F! and n3H~Fc! acrossS. The rationale
leading to Eq.~34! is quite similar to that of Millar@18#.

Since, by definition ofg, n•g* ~rS!50 for all rS , Eq. ~34!
implies

E
S0

ig* ~rS!i2dS50, ~35!

which indicates thatg~rS!50 almost everywhere onS and
ends the proof of completeness of theWn

(C)1(2K incPQ) in
L'
2~2K inc!.
It can be noted that since there is no constraint onK inc

and on the medium, the completeness of theWn
(C)1

(2K incPQ) in L'
2~2K inc! implies the completeness of the

Wn
1(K incPQ) in L'

2~K inc!. We are now in a position to deduce
the numerical convergence of the Rayleigh least-squares
method from the completeness of theWn

1(K incPQ) by again
proceeding as Millar@18#. The incident electric field is as-
sumed to beEinc(r0)5Vn0

2 (K inc)exp@ikn0
2 (K inc)•r0#. Let

Gk0
(C)(PP)(rS ;r0) be the radiative pseudoperiodic Green’s vec-

tor field in the complementary medium, with the source
along ek0, such thatn3Gk0

(C)(PP)(rS ;r0)50 for all r s on S.
The classical application of Green’s theorem yields

ek0•Eref~r0!5 ivE
S0

@n3Eref~rS!#

•H~C!@Gk0
~C!~PP!~rS ;r0!#dS, ~36!

whereEref is the reflected field,r0 is any vector point not
located onS, and the operatorH(C) applies to the depen-
dence inrS . Likewise, since the eigenwaves verify the gen-
eral equations of propagation and the radiation condition, we
can write for allP, Q, andn

ek0•Vn
1~K incPQ!exp@ ikn

1~K incPQ!•r0#

5 ivE
S0

Wn
1~K incPQ!~rS!•H

~C!@Gk0
~C!~PP!~rS ;r0!#dS. ~37!

Since theWn
1(K incPQ) with 2Mmax<P<Mmax and

2Nmax<Q<Nmax are independent vector functions, there
exists a single set of coefficientsAnPQ~Mmax, Nmax! that
minimizes the positive quantity err~Mmax, Nmax! defined by
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err2~Mmax,Nmax!5E
S0

i2n3Einc~rS!

2 (
n51

2

(
P,Q

AnPQ~Mmax,Nmax!

3Wn
1~K incPQ!~rS!i2dS, ~38!

where it is henceforth implicit that2Mmax<P<Mmax and
2Nmax<Q<Nmax and it can be noted thatn3Eref52n3Einc
at S.

In the Rayleigh least-squares method, the reflected field
Eref~r0! is taken to be equal toL~r0;Mmax, Nmax!, with

L~r0 ;Mmax,Nmax!5 (
n51

2

(
P,Q

AnPQ~Mmax,Nmax!Vn
1~K incPQ!

3exp@ ikn
1~K incPQ!•r0#, ~39!

where theAnPQ are those scalars that minimize the right-
hand side of Eq.~38!.

With Eqs. ~36! and ~37! and the Schwarz inequality, we
can write for all r0 not located onS and for allMmax and
Nmax

uek0•Eref~r0!2ek0•L~r0 ;Mmax,Nmax!u<v err~Mmax,Nmax!

3S E
S0

iH~C!@Gk0
~C!~PP!~rS ;r0!#i2dSD 1/2. ~40!

Because of the completeness of theWn
1(K incPQ) in L'

2~K inc!,
err~Mmax,Nmax! can be made as small as wanted by increas-
ing Mmax and Nmax; thus Eq. ~40! shows that, for allk0
~k051, 2, or 3!,

lim
Mmax,Nmax→1`

uek0•Eref~r0!2ek0•L~r0 ;Mmax,Nmax!u50

~41!

in all closed subsets of the medium aboveS. Therefore
L~r0;Mmax,Nmax! uniformly converges to the exact solution
in all closed subsets of the medium of propagation.

By writing that uniform convergence holds in particular
above the highest point ofS, it readily follows @18# that, for
given integersP andQ, andn51 or 2,

lim
Mmax,Nmax→1`

AnPQ~Mmax,Nmax!5tnn0~K incPQ ,K inc!.

~42!

Equations~41! and~42! have been established for a particu-
lar case of boundary condition. As noted by Millar@18# for
scalar diffraction, these equations can be extended to the case
of linear boundary conditions combiningn3E and n3H,
which ensure the existence and uniqueness of a solution to
the problem.

As indicated at the end of Sec. III, the Rayleigh least-
squares numerical results can also be connected by the
equalities~22! and ~23! to a Waterman method numerical
results. However, the above conclusions yield still firmer
ground for the application of the Rayleigh least-squares
method and more information~in particular about the evalu-
ation of the near field!.

V. NUMERICAL APPLICATION

A. Statement of the problem

We consider the case of a sinusoidal interfaceS between
an isotropic chiral medium, aboveS, and a perfectly con-
ducting medium, belowS. The interfaceS is defined by
z5h f(x) with f (x)5cos~2px/D!, wherex is an horizontal
coordinate~say, alonge1!; the constitutive relationships in
the chiral medium are@34#

D5e~E1b“3E!, ~43a!

B5m~H1b“3H!, ~43b!

wheree, m, andb are real scalars.
The interfaceS is illuminated by the electric fieldEinc

@34#

Einc~r !5(
j51

2

Aj

g j

j j ,0
ej ,0

2 exp@ ik j
2~K inc!•r #, ~44!

where, withk5v~em!1/2 and for any integerN,

g15
k

12kb
, ~45!

g25
k

11kb
, ~46!

k j
6~K incN!5K incNe16j j ,Ne3 , ~47!

j j ,N5~g j
22K incN

2 !1/2, ~48!

K incN5K inc12p
N

D
, ~49!

e1,N
6 5

1

&
Fe22 i

g1
~6j1,Ne12K incNe3!G , ~50!

e2,N
6 5

1

&
Fe21 i

g2
~6j2,Ne12K incNe3!G , ~51!

wherej51 or 2, and the square root in Eq.~48! is taken to be
positive if g j

2.K incN
2 and positive imaginary ifg j

2,K incN
2 .

The reflected electric fieldEref is numerically sought as@34#

Eref
~Nmax!~r !5 (

N52Nmax

Nmax

(
j51

2
g j

j j ,N
Cj ,Nej ,N

1 exp@ ik j
1~K incN!•r #.

~52!

B. Application of the Rayleigh least-squares method

In the Rayleigh least-squares method, the scattered mode
amplitudes are calculated by minimizing the integrated-
square error on the boundary conditionn3E50, which
amounts to writing, for allM such that2Nmax<M<Nmax
and for j51 or 2,

E
0

D

$~n83ej ,M
1 !exp@ ik j

1~K incM !•rS#%* •@n83Einc~rS!

1n83Eref
~Nmax!~rS!]dx50, ~53!
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where r s5xe11h f(x)e3, n852h f8(x)e11e3, andEinc and
Eref
(Nmax) are expressed by~44! and ~52!.
TheCj ,N’s are obtained by solving the linear system~53!,

which can be written, for allM such that2Nmax<M<Nmax
and for I51 or 2,

(
J51

2

(
N52Nmax

Nmax

URLS~M ,N,I ,J!CJ,N5 (
J51

2

AJZRLS~M ,I ,J!,

~54!

where the dependence of theCJ,N’s onNmax is implicit and,
for I ,J51 or 2,

jJ,N
gJ

URLS~M ,N,I ,J!

5F11~21! I1J
j I ,M* jJ,N

g IgJ
1
1

2 S 2p
h

D D 2
3S 11~21! I1J

K incNK incM

g IgJ
D G I N,M~ I ,J!2~21! I1J

3
i

2g IgJ
S 2p

h

D D ~j I ,M* K incN1jJ,NK incM !

3~ I N11,M
~ I ,J! 2I N21,M

~ I ,J! !2
1

4 S 2p
h

D D 2F11~21! I1J

3
K incNK incM

g IgJ
G~ I N12,M

~ I ,J! 1I N22,M
~ I ,J! !, ~55!

2
jJ,0
gJ

ZRLS~M ,I ,J!

5F12~21! I1J
j I ,M* jJ,0

g IgJ
1
1

2 S 2p
h

D D 2
3S 11~21! I1J

K incK incM

g IgJ
D GKM

~ I ,J!2~21! I1J

3
i

2g IgJ
S 2p

h

D D ~j I ,M* K inc2jJ,0K incM !

3~KM21
~ I ,J! 2KM11

~ I ,J! !2
1

4 S 2p
h

D D 2
3F11~21! I1J

K incK incM

g IgJ
G~KM22

~ I ,J! 1KM12
~ I ,J! !, ~56!

with the notations

I K,L
~ j ,k!5~2 i ! uK2LuJuK2Lu@h~j j ,M* 2jk,N!#, ~57!

KL
~ j ,k!5~2 i ! uLuJuLu@h~j j ,M* 1jk,0!#, ~58!

wherej ,k51 or 2 andJL is the cylindrical Bessel function of
order L. Equations~22a! and ~23a! of Ref. @34# have been
used to establish Eqs.~55! and ~56! here. Once the ampli-

tudes of the incident electric field are given, the problem is
completely described byK incD, kD, h/D, andb/D.

For all the real positivej1,N andj2,N, we set, withj51 or
2,

R1 j ,N5
g1

g j

j j ,0
j1,N

uC1,Nu2

uAj u2
, ~59!

R2 j ,N5
g2

g j

j j ,0
j2,N

uC2,Nu2

uAj u2
. ~60!

The exact values of the reflected efficienciesR1 j ,N andR2 j ,N
verify the law of conservation of energyEj51 with

Ej5(
N

~R1 j ,N1R2 j ,N!, ~61!

where only the real positive values ofj1,N and j2,N are re-
tained.

The performance of the Rayleigh least-squares method for
the calculation of the reflected efficiencies defined above is
illustrated in Table I, where some of them and their complete
sum are indicated. For these resultsA151 andA250, the
angle of incidenceui is 0, b/D50.025, andkD510. Up to
h/D50.10 ~the Rayleigh hypothesis is valid up toh/D
.0.072!, a good convergence of the reflected efficiencies is
found. As noted by Wirgin for isotropic achiral media@42#,
despite the fact that the Rayleigh least-squares method is
theoretically always convergent, the matrix of the linear sys-
tem~54! tends to become numerically singular for largeNmax
~all the larger ash/D is smaller! so that its inversion is
unreliable. Beyondh/D.0.10, this situation occurs before
Nmax can get large enough for the method to give satisfactory
results; thus, while incidence is normal for the results of
Table I, we find thatR21,21ÞR21,1, R11,22ÞR11,2, and
R11,21ÞR11,1 instead of equality forNmax520 and h/D
50.15 or 0.25~as indicated by the presence of an asterisk!.

We have found about the same limit of numerical appli-
cability in h/D with other values of angle of incidence and a
different polarization of the incident electric field; this limit
decreases somewhat whenkD increases~simply because
there are more reflected efficiencies to be determined!. It
may be greater for isotropic achiral media@17# because then
only one type of polarization may be involved and the linear
system to be solved may be smaller. As in the case of iso-
tropic achiral media, the Rayleigh least-squares method is
characterized by a slow and monotonic convergence of the
reflected efficiencies with a systematic deficit of energy in
the energy balance check asNmax increases@20#.

Since we expect the results of the Rayleigh least-squares
method to converge to the exact value ofE in the near field,
it is interesting to observe how the results obtained in this
region behave numerically, in particular whether the bound-
ary condition is verified and whether the electric field in the
grooves converges. We set r150.5De12he3,
r250.5De120.5he3, and

d~Nmax!~r1!5
in~r1!3Einc~r1!1n~r1!3Eref

~Nmax!~r1!i

in~r1!3Einc~r1!i .

~62!
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The values ofd (Nmax)(r1), iEref
(Nmax)(r2)i , and the components

of Eref
(Nmax)(r2), obtained whenNmax55, 10, or 20,ui50, kD

510,h/D50.10,b/D50.025,A151, andA250, are given in
Table II @the component ofEref

(Nmax)(r2) alonge3, of the order
of 1029, is not indicated#. Since r1 is on S, d (Nmax)(r1) is
expected to converge to 0; we can note that this is so up to
Nmax520 after which value the linear system~54! becomes
numerically singular, as explained above. This result is not
obvious from the construction of the Rayleigh least-squares
method, which requires verification of the boundary condi-
tion only in the mean-square sense. In addition, it also ap-
pears thatEref

(Nmax)(r2) converges up toNmax520. We have
found that numerical convergence ofd (Nmax)(r1) and
Eref
(Nmax)(r2) is observed for other choices of points onS and

in the grooves, and that it is obtained under the same condi-
tions as numerical convergence of reflected efficiencies~i.e.,
up toh/D.0.10, beyond the domain of validity of the Ray-
leigh hypothesis!.

C. Application of the Rayleigh-Fourier method

In the Rayleigh-Fourier method, the scattered mode am-
plitudes are calculated by projecting the boundary condition
n3E50 on the Fourier basis comprising the functions
t1exp(2iK incMx) and t2exp(2iK incMx), whereM is an inte-
ger such that2Nmax<M<Nmax and t15e11h f8(x)e3 and

t25e2. As a result, theCj ,N’s are obtained by solving the
linear system~54!, where theURLS andZRLS are replaced by
theURF andZRF defined by

j I ,N
g I

URF~M ,N,1,I !52F11
1

2 S 2ph

D D 2G I N,M~ I !

1
1

4 S 2ph

D D 2~ I N12,M
~ I ! 1I N22,M

~ I ! !,

~63!

~21! IURF~M ,N,2,I !5 i I N,M
~ I ! 1

1

2

K incN

j I ,N
S 2ph

D D
3~ I N11,M

~ I ! 2I N21,M
~ I ! !, ~64!

j I ,0
g I

ZRF~M ,1,I !5F11
1

2 S 2ph

D D 2GKM
~ I !2

1

4 S 2ph

D D 2
3~KM22

~ I ! 1KM12
~ I ! !, ~65!

~21! IZRF~M ,2,I !5 iKM
~ I !2

1

2

K inc

j I ,0
S 2ph

D D ~KM21
~ I ! 2KM11

~ I ! !,

~66!

with I51 or 2 and the notations

TABLE I. Reflected efficiencies calculated with the Rayleigh least-squares method for a sinusoidal grating defined byz5h cos(2px/D).
The problem parameters areui50, b/D50.025, andkD510 and the incident wave is defined byA151 andA250. The sum of the reflected
efficiencies corresponding to radiating eigenwaves is given in the column labelled SE. The presence of an asterisk indicates results that do
not satisfy the expected symmetry properties.

h/D Nmax R21,0 R21,1 R11,0 R11,1 SE

0.05 5 0.528 652 0.214 891 0.155 58931021 0.109 42131021 0.999 990
10 0.528 648 0.214 886 0.155 62031021 0.109 46531021 1.000 000
20 0.528 648 0.214 886 0.155 62031021 0.109 46531021 1.000 000

0.10 5 0.147 75231021 0.372 937 0.158 648 0.131 65131021 0.987 574
10 0.145 89431021 0.367 079 0.168 043 0.151 04631021 0.999 682
20 0.145 87631021 0.366 953 0.168 243 0.151 47831021 1.000 000

0.15 5 0.134 749 0.159 238 0.294 204 0.124 98131021 0.820 821
10 0.143 982 0.116 774 0.443 203 0.159 19131021 0.954 889
20 0.145 098 0.108 138* 0.479 079 0.168 33331021* 0.998 558

0.25 5 0.242 00031021 0.763 10431021 0.347 921 0.548 53731021 0.666 257
10 0.448 66031021 0.150 575 0.398 691 0.863 69331021 0.951 101
20 0.609 54231021 0.177 420* 0.349 345 0.993 82531021* 1.007 188

TABLE II. Reflected electric field atr250.5De120.5he3 and verification of the boundary condition at
r150.5De12he3 obtained with the Rayleigh least-squares method for a sinusoidal grating defined by
z5h cos(2px/D). The problem parameters areui50, b/D50.025,kD510, andh/D50.10 and the incident
wave is defined byA151 andA250. The component ofEref

(Nmax) alonge3, of order 10
29, is not given.

Nmax 5 10 20

e1•Eref
(Nmax)(r2) 0.765 35410.163 339i 0.782 55710.180 184i 0.782 92710.180 365i

e2•Eref
(Nmax)(r2) 20.219 24820.778 731i 20.209 57420.763 293i 20.209 34620.763 002i

iEref
(Nmax)(r2)i 1.125 583 1.127 564 1.127 610

d (Nmax)(r1) 0.7531021 0.9531022 0.2031023
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I K,L
~ I ! 5~2 i ! uK2LuJuK2Lu~2hj I ,N!, ~67!

KL
~ I !5~2 i ! uLuJuLu~hj I ,0!. ~68!

Numerical results obtained for the reflected efficiencies
with the Rayleigh-Fourier method with the same conditions
as in Table I~except forNmax! are shown in Table III. As in
the case of an achiral isotropic medium@20#, the Rayleigh-
Fourier method, compared to the Rayleigh least-squares
method, can be used for greater values ofh/D ~up to 0.25!
and converges faster. We have generally observed a mono-
tonic convergence of the reflected efficiencies. We have
found again that the angle of incidence and the polarization
of the incident electric field do not significantly affect the
domain or the rate of convergence; this domain decreases
somewhat whenkD increases.

dNmax(r1), defined in Sec. V B, is found to converge to 0
only when the Rayleigh hypothesis is valid, which is in
agreement with the computations presented by Chesneaux
and Wirgin @21# for an achiral isotropic medium. The con-
vergence of the near field is slower than it is with the Ray-
leigh least-squares method; the slow convergence of the
Rayleigh-Fourier method for the computation of the near
field has also been noted in Ref.@21#.

VI. CONCLUSION

We have considered the problem of electromagnetic re-
flection and transmission at a periodic rough interface sepa-
rating two semi-infinite general homogeneous media. The
problem is assumed to have a unique solution. We have
shown that numerical convergence of the Waterman-Fourier
method for the calculation of theT-matrix coefficients im-
plies numerical convergence of the Rayleigh-Fourier
method. The latter must therefore not be regarded as limited
by the validity of the Rayleigh hypothesis for the computa-
tion of the reflected and transmitted amplitudes; this is con-
firmed by the numerical results of Depine and Gigli@38#.
This is also confirmed by the application to the case of a
sinusoidal surface separating a perfectly conducting medium
and a chiral medium; very good results are found for the
reflected efficiencies up toh/D50.25, which is more than 3

times the maximum slope of validity of the Rayleigh hypoth-
esis. We have found, however, that the Rayleigh-Fourier
method is either invalid~if the Rayleigh hypothesis does not
hold! or inadequate to evaluate the near field.

In the case of a single semi-infinite medium bounded by a
periodic rough surface, it has been shown that the Rayleigh
least-squares method gives expansions that uniformly con-
verge to the exact reflected field in all closed subsets of the
medium; as a consequence, the Rayleigh least-squares
method is also numerically convergent for the calculation of
the reflected amplitudes. These convergence properties stem
from completeness properties of the set of outgoing and eva-
nescent eigenwaves. They have been corroborated by the ap-
plication to the same case as for the Rayleigh-Fourier
method; good results for the reflected efficiencies and for the
near field have been found up toh/D.0.10, which is about
1.5 times the maximum slope of validity of the Rayleigh
hypothesis. Beyond this value ofh/D, the method becomes
inapplicable for numerical reasons@42#.

The qualitative features of the Rayleigh least-squares
method found by Wirgin with an achiral isotropic medium
@20# and a sinusoidal surface, namely, a slow and monotonic
convergence of the reflected efficiencies, are unchanged
when the medium is chiral. It is not the case for the
Rayleigh-Fourier method: it still converges faster, but in a
monotonic~and not oscillatory! fashion. It seems reasonable
to conjecture that, in anisotropic media as in isotropic chiral
and achiral media, the Rayleigh-Fourier method is more
suited~faster convergence and larger domain of validity! to
compute the reflected efficiencies and the Rayleigh least-
squares method is more suited to compute the near field.

For the demonstration of these results, it has been as-
sumed that the dispersion equation~9! has only single roots
in kz with each root corresponding to a one-dimensional
space of eigenvectors. This is not true in the limiting case of
an achiral isotropic medium; however, the expression of the
free-space Green’s vector fields is still similar to Eq.~7! and
it is possible to reach the conclusions indicated above. In
addition, in Sec. IV, which deals with the Rayleigh least-
squares method, we have made the classical assumptions of
term by term differentiability and uniform convergence of

TABLE III. Reflected efficiencies calculated with the Rayleigh-Fourier method for a sinusoidal grating defined byz5h cos(2px/D).
The problem parameters areui50, b/D50.025, andkD510 and the incident wave is defined byA151 andA250. The sum of the reflected
efficiencies corresponding to radiating eigenwaves is given in the column labeled SE.

h/D Nmax R21,0 R21,1 R11,0 R11,1 SE

0.05 5 0.528 648 0.214 886 0.155 61931021 0.109 46431021 1.000 000
10 0.528 648 0.214 886 0.155 62031021 0.109 46531021 1.000 000
15 0.528 648 0.214 886 0.155 62031021 0.109 46531021 1.000 000

0.10 5 0.145 95231021 0.366 975 0.168 201 0.151 49531021 1.000 032
10 0.145 87631021 0.366 953 0.168 243 0.151 47831021 1.000 000
15 0.145 87631021 0.366 953 0.168 243 0.151 47831021 1.000 000

0.15 5 0.143 976 0.108 696 0.478 696 0.171 24831021 1.000 358
10 0.145 261 0.107 774 0.480 290 0.168 68131021 1.000 002
15 0.145 263 0.107 771 0.480 296 0.168 67131021 1.000 000

0.25 5 0.571 21531021 0.169 627 0.271 784 0.962 95131021 0.928 041
10 0.728 79931021 0.177 864 0.304 805 0.105 771 0.999 909
15 0.734 22631021 0.177 897 0.305 001 0.105 780 1.000 003
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the series in Eq.~A10!; term by term differentiability has
enabled us to regard the Green’s vector fields as analytic.

We can try to further extend the conditions of validity of
the conclusions reached. If there exists a complementary me-
diumC such that the dispersion relationship governing plane
waves propagation verifies, with the definitions of Sec.
II, L (C)~2k,v!5tL~k,v! for all k and v, and if the
vector fields sought can be expressed by surface integrals
with integrands of the form A(n,E)•B(C)(n,Gk0

(C))

2A(C)(n,Gk0
(C))•B(n,E), whereA andB are surface vector

fields expressing the interface conditions, then it is possible
to reproduce the demonstrations of this paper. Such condi-
tions include anisotropic elastic media; they also include me-
dia that do not necessarily satisfy the physical constraints of
electromagnetic propagation@39#. We conjecture that Ray-
leigh methods can, as in the case of acoustic scattering in
isotropic media@43#, be applied to scattering from finite bod-
ies under the same general conditions.

The conclusions of this paper broadly extend results pro-
gressively established in the case of simple isotropic media
@18,24,25#. It can be noted that they focus on the numerical
results obtained with the Rayleigh methods~and their rela-
tion to the exact results! so that they have a practical interest.
These conclusions also indicate that approaches related to
the Rayleigh methods discussed, and apparently not yet con-
sidered for general media, could be useful. One of them is a
numerical method proposed by Matsuda and Okuno@44# to
enhance the convergence of the Rayleigh least-squares
method, which is rather slow in practice. Another is the per-
turbation method@22# possibly implemented with enhanced
convergence techniques@27–31#. Indeed, for surface profiles
that are finite linear combinations of sinusoids, the demon-
stration of either Sec. III or Ref.@25# ~extended to general
media! can be used~because then only finite sums intervene
at each order! to show that the Rayleigh-Fourier perturbation
series is identical to the Waterman-Fourier perturbation se-
ries so that the former, which is easier to implement, can be
regarded as derived from an exact formalism.

APPENDIX: WATERMAN-FOURIER FORMALISM

TheT-matrix formalism proposed by Waterman for elec-
tromagnetic scattering@45# involves two steps: solving the
null-field equations@46# for the unknown surface fields and
using the result to compute the reflected and transmitted
fields with the classical integral representation. The unknown
surface fields are represented by an expansion on a set of
complete functions; when a Fourier expansion is used, the
method is sometimes called the Waterman-Fourier method
@14#.

In the case whereS separates media 1 and 2, a classical
demonstration using Green’s theorem leads to

Einc,k0
~1! ~r0!1 ivE

S
@~n3E!•H~1C!~Gk0

~1C!!

1~n3H!•Gk0
~1C!#dS50 ~A1!

for all k0 ~k051, 2, or 3!, whereEinc,k0
(1) is thek0

th component

of the incident electric field coming from medium 1,r0 is

any vector point located belowS, and Gk0
(1C) stands for

Gk0
(1C)(rS ;r0), whererS is a vector point onS. The extinction

theorem yields a second equation

Einc,k0
~2! ~r0!2 ivE

S
@~n3E!•H~2C!~Gk0

~2C!!

1~n3H!•Gk0
~2C!#dS50, ~A2!

whereEinc,k0
(2) is the k0

th component of the incident electric

field coming from medium 2,r0 is any vector point located
aboveS, andGk0

(2C) stands forGk0
(2C)(rS ;r0), whererS is a

vector point onS. In Eqs.~A1! and~A2!, the operatorsH( jC)

apply to the dependence inrS .
The 6 superscripts ofE andH in the surface integrals

have been omitted because of the interface conditions~2a!
and ~2b!. Equations~A1! and ~A2! form a system of two
equations with the two unknown surface fieldsn3E and
n3H. Once these unknowns are determined, they can be
used in the integral representation of the electric field in me-
dium 1, which can be written as

Ek0
~1!~r0!5Einc,k0

~1! ~r0!1 ivE
S
@~n3E!•H~1C!~Gk0

~1C!!

1~n3H!•Gk0
~1C!#dS, ~A3!

whereEk0
(1) is thek0

th component of the electric field in me-

dium 1, r0 is any vector point located aboveS, andGk0
(1C)

stands forGk0
(1C)(rS ;r0), whererS is a vector point onS. A

similar expression can be established for the electric field in
medium 2, but only Eq.~A3! is necessary for the purpose of
this paper.

We express the Waterman-Fourier formalism with the in-
cident fields

Einc,k0
~1! ~r0!5d1@ek0•Vn0

~1!2~K inc!#exp@ ikn0
~1!2~K inc!•r0#,

~A4!

Einc,k0
~2! ~r0!5d2@ek0•Vn0

~2!1~K inc!#exp@ ikn0
~2!1~K inc!•r0#,

~A5!

whered1 andd2 are complex scalars. We write the reflected
electric field in medium 1 above the highest point ofS as

Eref
~1!~r !5 (

n51

2

(
M ,N

Tnn0
~1! ~K incMN ,K inc!Vn

~1!1~K incMN!

3exp@ ikn
~1!1~K incMN!•r #, ~A6!

where theTnn0
(1) ’s are complex scalars.

By noting the pseudoperiodicity of the surface fields, us-
ing the expression~7! of the free-space Green’s vector fields
~applied to media 1C and 2C! and Eqs.~16!–~18! and pro-
ceeding as Waterman@47#, we can rewrite Eqs.~A1!–~A3!
as
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Einc,k0
~1! ~r0!1 ivE

S0
@~n3E!•H~1C!~Gk0

~1C!~PP!!

1~n3H!•Gk0
~1C!~PP!#dS50, ~A7!

Einc,k0
~2! ~r0!2 ivE

S0

@~n3E!•H~2C!~Gk0
~2C!~PP!!

1~n3H!•Gk0
~2C!~PP!#dS50, ~A8!

Ek0
~1!~r0!5Einc,k0

~1! ~r0!1 ivE
S0

@~n3E!•H~1C!~Gk0
~1C!~PP!!

1~n3H!•Gk0
~1C!~PP!#dS, ~A9!

where S0 is the unit cell ofS used in Sec. III and the
pseudoperiodic Green’s vector fieldsGk0

( jC)(PP) stand for

Gk0
( jC)(PP)(rS ;r0) and are such that

Gk0
~ jC !~PP!~r ;r0!56

i

4p2 iR13R2i (
n51

2

(
P,Q

an
~ j !6~K incPQ!

3@ek0•Vn
~ j !6~K incPQ!#Dn

~ j !6~K incPQ,v!

3Vn
~ jC !7~2K incPQ!

3exp@ ikn
~ jC !7~2K incPQ!•~r2r0!#,

~A10!

where the upper sign applies if (z02z).0 and the lower sign
applies if (z02z),0.

Equation~A10! could also be obtained by seeking, in the
space of generalized functions defined as in Ref.@1#, the
Gk0
( jC)’s in the form of a double Fourier series and by defining

the a n
( j )6’s and D n

( j )6’s as in Sec. II. We assume that
Gk0
( jC)(PP) has a sense as a vector field~when rÞr0! and that

its differentiation with respect to the Cartesian coordinates of
r0 can be carried out by term by term differentiation of the
series in Eq.~A10!. As a consequence,Gk0

( jC)(PP) is a holo-

morphic function of the Cartesian coordinates ofr0 and is
therefore analytic@40#.

With Eqs.~A4!–~A10! and Eq.~16!, we find that

4p2d1
van0

~1!2~K inc!
@Dn0

~1!2~K inc ,v!#21dnn0dP0dQ0

1E
S0

@~n3H8!•Vn
~1C!1~2K incPQ!#

3exp@ ikn
~1C!1~2K incPQ!•r #d2R

1E
S0

@~n3E8!•HVn
~1C!1~2K incPQ!#

3exp@ ikn
~1C!1~2K incPQ!•r #d2R50, ~A11!

4p2d2
van0

~2!1~K inc!
@Dn0

~2!1~K inc,v!#21dnn0dP0dQ0

1E
S0

@~n3H8!•Vn
~2C!2~2K incPQ!#

3exp@ ikn
~2C!2~2K incPQ!•r #d2R

1E
S0

@~n3E8!•HVn
~2C!2~2K incPQ!#

3exp@ ikn
~2C!2~2K incPQ!•r #d2R50, ~A12!

2
4p2

van
~1!1~K incPQ!

@Dn
~1!1~K incPQ ,v!#21Tnn0

~1! ~K incPQ ,K inc!

5E
S0

@~n3H8!•Vn
~1C!2~2K incPQ!#

3exp@ ikn
~1C!2~2K incPQ!•r #d2R

1E
S0

@~n3E8!•HVn
~1C!2~2K incPQ!#

3exp@ ikn
~1C!2~2K incPQ!•r #d2R, ~A13!

where the notationsH8 andE8 stand for

H85@11~“ f !2#1/2iR13R2iH, ~A14!

E85@11~“ f !2#1/2iR13R2iE. ~A15!

Equations~A11!–~A13! hold for all K inc , all integersP and
Q, and alln andn0 ~n,n051 or 2!. When a numerical solu-
tion is sought, the unknown surface fieldsn3E8 andn3H8
are expanded on a set of complete functions and the equa-
tions are truncated. For the purpose of this paper, we choose
to write the equations for a transverse incident wave vector
equal to2K incM0N0

~whereM0 andN0 are given integers!
and a truncation such thatM02Mmax<P<M01Mmax and
N02Nmax<Q<N01Nmax, whereMmax andNmax are posi-
tive integers such thatMmax.uM0u andNmax.uN0u. For the
pseudoperiodic surface fieldsn3E8 andn3H8, we set

n3E8~rS!5(
l51

2

(
K5M02Mmax

K5M01Mmax

(
L5N02Nmax

L5N01Nmax

a l ,KLt l~rS!

3exp@2 iK inc~M02K !~N02L !•R#, ~A16!

n3H8~rS!5(
l51

2

(
K5M02Mmax

K5M01Mmax

(
L5N02Nmax

L5N01Nmax

b l ,KLt l~rS!

3exp@2 iK inc~M02K !~N02L !•R#, ~A17!

whererS is a point ofS0 andt1 andt2 are the vectors tangent
to S0 chosen as in Sec. III~for the application of the
Rayleigh-Fourier method!.

Then Eqs.~A11! and ~A12! yield, for n051 or 2 and for
all integersP andQ defined by the above truncation,
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B~1C!1~n,M02P,N02Q;M0 ,N0!52
4p2d1

van0
~1!2~2K incM0N0

!
@Dn0

~1!2~2K incM0N0
,v!#21dnn0dP0dQ0 , ~A18!

B~2C!2~n,M02P,N02Q;M0 ,N0!52
4p2d2

van0
~2!1~2K incM0N0

!
@Dn0

~2!1~2K incM0N0
,v!#21dnn0dP0dQ0 , ~A19!

where, with j51 or 2,

B~ jC !6~n,M02P,N02Q;M0 ,N0!5(
K,L

a1,KLY
~ jC !6~K inc,2,n,M02P,N02Q,M02K,N02L !

2(
K,L

a2,KLY
~ jC !6~K inc,1,n,M02P,N02Q,M02K,N02L !

1(
K,L

b1,KLX
~ jC !6~K inc,2,n,M02P,N02Q,M02K,N02L !

2(
K,L

b2,KLX
~ jC !6~K inc,1,n,M02P,N02Q,M02K,N02L !. ~A20!

For the scattered mode amplitude corresponding to a transverse component of the wave vector equal to2K inc , Eq. ~A13!
yields

2
4p2

van
~1!1~2K inc!

@Dn
~1!1~2K inc ,v!#21Tnn0 ,W

~1! ~2K inc ,2K incM0N0
!

5(
K,L

a1,KLY
~1C!2~K inc,2,n,0,0,M02K,N02L !2(

K,L
a2,KLY

~1C!2~K inc,1,n,0,0,M02K,N02L !

1(
K,L

b1,KLX
~1C!2~K inc,2,n,0,0,M02K,N02L !2(

K,L
b2,KLX

~1C!2~K inc,1,n,0,0,M02K,N02L !. ~A21!

X( jC)6 andY( jC)6 are defined in Sec. III. In Eqs.~A20! and~A21!, it is implicit that the sums on the integersK andL are such
thatM02Mmax<K<M01Mmax andN02Nmax<L<N01Nmax. The subscriptW in Eq. ~A21! indicates that the results are
obtained with the Waterman-Fourier method and the truncation chosen. Equations~A18!–~A21! are useful to establish the
connection between the numerical results obtained with the Rayleigh-Fourier and Waterman-Fourier methods.
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